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Abstract 

Background  Armed conflicts, natural disasters and forced population displacement have escalated dramatically 
since the 1990s. By mid-2024, the total number of people driven from their homes, often surviving in very harsh 
conditions for years, reached 122.6 million globally. In emergencies characterised by flimsy shelters, food insecurity, 
inadequate sanitation, poor access to health services and increased exposure to blood-feeding insects, diseases 
such as malaria, dengue and leishmaniasis cause high levels of morbidity and mortality. Conventional vector control 
interventions are inadequate in these settings due to operational and biological limitations. Novel vector control 
tools which are lightweight, easy to use and effective against multiple vector species are urgently needed to protect 
displaced populations.

Methods  We conducted a 6-month, 2-arm community field trial in two internally displaced people camps in Maidu-
guri, Nigeria, to evaluate the entomological efficacy of attractive targeted sugar baits (ATSB). Monthly entomological 
monitoring measured changes in adult and immature vector density. Intervention acceptability was assessed using 
focus group discussions and a cross-sectional survey. To investigate environmental drivers of vector abundance, 
which might influence field outcomes, a hybrid approach of unsupervised and supervised machine learning regres-
sion models was developed using composite demographic, bioclimatic and ecological remote sensing data.

Results  ATSB demonstrated a significant impact on indoor female Anopheles gambiae s.l. density (IRR: 0.140 
[95% CI: 0.093–0.212]; p < 0.0001) and indoor blood-fed An. gambiae s.l. density (IRR: 0.0193 [95% credible interval: 
0.0111–0.0356]). ATSB also significantly reduced indoor blood-fed Aedes aegypti (IRR: 0.0746 [95% credible intervals: 
0.00884–0.502]). More than 97% of camp residents showed high levels of acceptance for ATSB, including willingness 
to pay. The strongest environmental predictors of An. gambiae s.l. occurrence were composite indices of vegetation 
water content, soil moisture, moist canopy, landcover diversity, urbanisation and normalised and enhanced vegeta-
tion index which together contributed to 73.5% of the final model.
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Conclusions  Field trial findings strongly support the use of ATSB to control sympatric malaria and dengue vector 
populations in humanitarian crises. Remote sensing analysis identified key drivers of An. gambiae s.l. occurrence pro-
viding a high-resolution environmental profile where ATSB achieved an entomological impact against multiple vector 
species.

Keywords  Conflict, Internally displaced persons, Malaria, Dengue, Temporary shelter, Vector control, Attractive 
targeted sugar baits

Background
Humanitarian crises are a singular event or series of 
events which critically threaten the health, safety, secu-
rity and well-being of communities or populations [1]. 
Irrespective of whether the source is natural, climate-
related or man-made, these crises may be accompanied 
by large-scale population movement, food insecurity 
and severe health systems disruptions [2]. In mid-2024, 
the United Nations High Commissioner for Refugees 
(UNHCR) estimated that 122.6 million people have been 
forcibly displaced worldwide, including 43.7 million refu-
gees, 72.1 million internally displaced people (IDP) and 
8 million asylum-seekers [3]. In 2025, the UN estimates 
that 305 million people will need humanitarian aid [4], 
and by 2030, two-thirds of the world’s extreme poor will 
reside in areas of fragility, conflict and violence, with the 
latter driving 80% of all humanitarian needs [5]. Glob-
ally, approximately two-thirds of individuals affected by 
humanitarian crises inhabit malaria endemic areas [6], 
with almost complete geographical overlap between 
high burden malaria countries, regions of other intense 
vector-borne disease (VBD) transmission and ongoing 
emergencies, particularly in the World Health Organi-
zation (WHO) African region. Mass population dis-
placement increases the risk of severe VBD epidemics, 
especially when individuals with little to no prior dis-
ease exposure move into areas of more intense transmis-
sion or when patients with subclinical infections transit 
into new settings [7]. Inadequate water, sanitation, and 
hygiene (WASH) facilities, drainage and waste man-
agement systems all contribute to high levels of vector 
breeding and increased disease transmission [8]; water 
storage in artificial containers in emergency settings is 
also highly conducive to the proliferation of arbovirus 
transmitting vector species, especially Aedes (Ae.) aegypti 
and Ae. albopictus, and the invasive malaria vector spe-
cies, Anopheles (An.) stephensi [9, 10].

VBD transmission in many harsh humanitarian 
crises normally ramps up sharply and remains high 
where effective disease prevention is not established 
[11]. During the economic and civil conflict in Ven-
ezuela from 2000 to 2020, there was a 1200% increase 
in malaria cases [12]. More recently between 2021 and 
2022, in Pakistan, catastrophic flooding affected more 

than 30 million people, leading to a 25% rise in malaria 
cases [13]. In 2023 in the Rohingya refugee camps in 
Cox’s Bazar, Bangladesh, there were more than 17,500 
reported dengue cases, including 3800 hospitalisations 
[14]. Finally, in the Central African Republic, where 
conflict has continued since 2008 and human rights 
abuse abounds, the highest measured nationwide mor-
tality has been reported, with malaria being the leading 
cause [15].

Insecticide-treated nets (ITNs) and indoor residual 
spraying (IRS) are the cornerstones of malaria vector 
control in endemic, non-emergency settings, with a 
wealth of robust epidemiological data supporting their 
wide-scale deployment [13, 16–18]. While the WHO 
Global Malaria Program has endorsed the use of both 
ITNs and IRS during humanitarian emergencies [19, 
20], their levels of protective efficacy are highly vari-
able, as both interventions are contingent on living in 
a suitable housing or shelter structure which supports 
a hanging ITN or insecticidal treatment of an interior 
wall surface. In crisis settings, these core tools have 
not just insurmountable operational issues, including 
the need for a large, technically skilled workforce to 
implement repeated rounds of rotational IRS, very long 
lead times for ITN manufacture and high costs associ-
ated with importing IRS insecticides, heavy-duty spray 
tanks, personal protective equipment and heavy bar-
rels of ITNs, but also biological limitations [21]. Con-
sequently, malaria and other VBD deaths tend to rise 
sharply in the first weeks of an emergency and may stay 
very high for years in chronic situations [8]. While, in 
suitable permanent housing structures, ITNs and IRS 
can be very effective at controlling the few highly spe-
cialised Anopheles mosquito species that have strong 
preferences for human blood meals and bite at night, 
when people tend to be indoors and less mobile [16–
18]; these interventions are unable to control the many 
other Anopheles populations that bite earlier in the 
evening or later in the morning, when most individuals 
are outdoors, nor do they provide protection from day-
biting arbovirus vectors [22, 23]. ITNs and IRS also fail 
to control Anopheles vectors that enter houses at night, 
but exit early, are irritated, or repelled by the active 
ingredients (A.I.) used in ITNs and IRS. Collectively, 
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these ‘unorthodox’ mosquito species and behaviours 
occur in every endemic setting in Africa and sustain 
significant levels of persistent, residual malaria trans-
mission [24, 25].

Recognising that the current armamentarium of vec-
tor control tools will be insufficient to eliminate malaria, 
there has been increasing momentum from commercial 
manufacturers, key donors and stakeholders to develop 
novel malaria and other multi-vector control tools, some 
of which may be appropriate for the emergency con-
text. Attractive targeted sugar baits (ATSB) exploit the 
fundamental requirement of all mosquitoes to periodi-
cally feed on sugar (usually plant and floral nectars) to 
survive, by attracting mosquitoes to a sugar source to 
deliver an ingestion toxicant, thereby inducing vector 
mortality [26]. ATSB have several features which render 
them suitable for use during humanitarian crises, par-
ticularly in remote, insecure and inaccessible areas, or 
in mobile populations that move with little forewarning. 
They are light weight, highly portable, easily implementa-
ble and adaptable for diverse shelter types. ATSB also 
remain stable and viable when kept in storage for long 
time periods, allowing for stockpiling in strategic loca-
tions, ready for rapid deployment during crisis. Because 
populations affected by humanitarian emergencies suffer 
major trauma, it can be difficult to encourage behavioural 
change for beneficial good, which ATSB do not require. 
In these limited resource settings, communities may 
repurpose distributed humanitarian commodities, e.g. 
ITNs may be used for building structures, furniture or 
fishing; ATSB cannot be repurposed for any other func-
tion; therefore, distribution should lead to intended use.

To date, ATSB have been exclusively evaluated in sta-
ble settings to interrupt several mosquito and sand fly 
vector populations [27–31]. During initial semi-field tri-
als, ATSB presented promising results in arid parts of 
West Africa, indicating that bait stations reduced num-
bers of female Anopheles with ≥ 3 gonotrophic cycles by 
97.1% and sporozoite positive females by 97.8% [32, 33]. 
However, subsequent phase III cluster-randomised con-
trolled trials (cRCT) in Mali, Kenya and Zambia reported 
minimal epidemiological impact on malaria transmission 
[34–37].

At the end of 2023, Africa hosted 35 million IDPs, 32.5 
million were displaced by conflict and violence and 80% 
were concentrated in just five countries, the Democratic 
Republic of Congo, Ethiopia, Nigeria, Somalia and Sudan 
[38]. During the same time, four countries in sub-Saharan 
Africa accounted for ~ 50% of all global malaria cases and 
deaths, with Nigeria bearing the greatest burden (25.9% 
of all malaria cases and 30.9% of all malaria deaths) [39]. 
In the North of Nigeria, the protracted crisis and violent 
conflict have now entered the sixteenth year. Over 1.7 

million people have been displaced from their homes in 
the second largest state, Borno State, of which approxi-
mately 853,000 live across 200 IDP camps [40]. As these 
camps have formed quickly, housing structures consist 
mostly of shelters constructed from plastic sheeting with 
a basic wooden frame. Nearly half of the IDP are living 
in these emergency shelters, while 33% reside in partially 
constructed or make-shift shelters with exposure to the 
elements [41]. We aimed to evaluate the entomological 
efficacy of ATSB against multiple vector species in IDP 
camps during a protracted humanitarian emergency in 
Northern Nigeria.

Methods
Study area and design
This study was a 6-month, 2-arm community-level field 
trial conducted in two urban IDP camps in Maiduguri 
Local Government Area (LGA), Borno State, Nigeria 
[Sabon Gari (11°50′50.4″N 13°06′32.0″E) and Doro 
(11°52′51.1″N 13°07′00.8″E)], which are separated by 
approximately 3.78  km. This area is characterised by 
hot, semi-arid climate, sparse savanna grasslands and 
shrubs, with land use dominated by subsistence agri-
culture, livestock grazing and increasing urbanisation. 
Population demographics for study camps are detailed 
in Additional file  1: Table  S1. In Borno State, malaria 
accounts for more than 50% of mortality and morbidity, 
particularly in children < 5  years [42]. The peak malaria 
transmission seasons extend from July to October dur-
ing the rainy season. The principal malaria vectors are 
An. coluzzii (98%) and, to a lesser extent, An. arabiensis 
(2%) (Allan R, Scherrer R, Estecha-Querol S, Weetman 
D, Paris L, Ba’abba Goni U, et  al, The effectiveness of 
long-lasting spatial  repellent against malaria in humani-
tarian crisis settings in Northern Nigeria. Lancet Infec-
tious Diseases. 2025, under review). Anopheles coluzzii 
from Maiduguri LGA is resistant to pyrethroids with a 
61.5% [95% CI: 58.8%–64.1%] frequency of voltage-gated 
sodium channel (vgsc)−995F and 15.6% [13.7%–17.6%] 
frequency of vgsc−1570Y mutations (Allan R, Scherrer 
R, Estecha-Querol S, Weetman D, Paris L, Ba’abba Goni 
U, et al, The effectiveness of long-lasting spatial repellent 
against malaria in humanitarian crisis settings in North-
ern Nigeria. Lancet Infectious Diseases. 2025, under 
review). Dengue also circulates in Borno State, coincid-
ing with the main rainy season, but is underreported as 
most health facilities lack rapid diagnostic tests; a survey 
of febrile patients in Maiduguri detected anti-dengue 
IgM antibodies in 35% of participants [43].

ATSB intervention
The Sarabi v1.2 ATSB station (Westham Co., Hod-Hasha-
ron, Israel) measures 24  cm × 31  cm. Each bait station 
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comprises a dark perforated membrane (4 pores/cm2) 
that covers 16 wells containing 72 g date syrup-based bait, 
which acts as both the attractant and sugar meal, laced 
with dinotefuran (0.1% w/w), the A.I., and a bittering agent, 
Bitrex® (Johnson Matthey Group), to deter human con-
sumption. Mosquitoes can probe and feed through small 
membrane pores of ~ 150 micron in diameter to access the 
sugar meal and A.I., while reducing the ability of non-tar-
get organisms to contact the bait. Dinotefuran (N-methyl-
N′-nitro-N″-[(tetrahydro-3-furanyl)methyl]guanidine) is 
a neonicotinoid, which targets the nicotinic acetylcholine 
receptor (nAChR) in the insect central nervous system. 
Environmental assessment in Mali demonstrated that the 
ATSB toxicant poses limited risk to non-target organisms, 
including pollinators and humans [44].

Entomological monitoring
Following baseline entomological monitoring, 516 ATSB 
stations were installed to 172 shelters in Sabon Gari camp 
from 3 to 7 September 2024. Per shelter, 1 ATSB station 
was installed indoors, in the living room, and 2 ATSB sta-
tions were fixed outdoors on the side of each shelter; all 
ATSB stations were positioned 1.5–1.8 m above ground 
(Fig.  1A–D), according to the manufacturer’s specifica-
tions. Despite the ATSB stations remaining efficacious 
for 6 months per manufacturer’s recommendations, after 
entomological monitoring round 3, all original ATSB sta-
tions were replaced with new units; 507 ATSB stations 
were installed to 169 shelters from 9 to 13 December 
2024. The control camp (Doro camp) received no vector 

control intervention as part of this field trial during the 
study period.

US Centers for Disease Control and Prevention light 
traps (CDC-LTs; John W Hock Company, USA) were 
used to sample adult, host-seeking vector populations 
for one trap night per month in a longitudinal cohort of 
130 households per camp, over 6  months of follow-up. 
CDC-LTs were hung 1 m from the ground next to sleep-
ing spaces indoors and were operational between 18:00 
and 07:00 [45]. Indoor and outdoor resting adult vector 
populations were collected from the same houses using 
a 12-V battery-powered Prokopack aspirator the follow-
ing morning [46]. Systematic sampling of indoor adult 
vectors resting on the walls, roofs, floors, furniture and 
household items was conducted in each room for up to 
10  min, depending on the size of the house. Outdoor 
collections were performed from potential resting sites 
around the house, such as under roof eaves. One week 
after adult vector trapping, mosquito larvae/pupae were 
sampled from one water storage container per household 
using standard larval dippers. A minimum of 5 dips were 
used to sample each container, 4 from the corners/edges 
and 1 from the centre, with a short interval in between to 
allow for larvae/pupae that had descended to the bottom 
of the container to resurface. If containers could not be 
accessed using a dipper, then the water was poured out 
into a larger bucket, and immature stages were sampled 
in the same manner. Each month, ASTB coverage and 
condition were assessed in all 172 shelters in Sabon Gari 
camp during entomological monitoring activities. If any 

Fig. 1  A Outdoor Sarabi v1.2 ATSB installation. B Indoor Prokopack aspiration and placement of Sarabi v1.2 ATSB. C ATSB information, education 
and communication (IEC) campaign. D Outdoor Prokopack aspiration and placement of Sarabi v1.2 ATSB. E Community engagement meeting 
during field trial baseline; F focus group discussion with men in Sabon Gari at 6 months post-intervention; and G focus group discussion 
with women in Sabon Gari at 6 months post-intervention
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ATSB stations were missing, these were replaced imme-
diately by the study team.

Laboratory analysis
Morphological identification
Adult Anopheles and Aedes were identified to species 
based on their morphology using dichotomous identi-
fication keys [47, 48]. The physiological status of female 
mosquitoes was further recorded. Adult Culex and phle-
botomine sandflies were sexed and their physiological 
status recorded but not identified to species level. Thirty-
two adult Anopheles were too damaged to be identified 
to species level (26 indoors and 6 outdoors) and were 
excluded from further analysis. A minority of adult 
An. funestus s.l. (18 indoors and 4 outdoors) and phle-
botomine sandflies (3 indoors) were also collected but 
excluded from the primary analysis. Immature larvae/
pupae were a visible mix of Aedes and Culex genera and 
were not identified further.

Molecular species identification
Molecular species ID was confirmed among a sub-set of 
An. gambiae s.l. and suspected An. kingi from both field 
trial arms. DNA was extracted from whole mosquitoes 
using the Qiagen DNeasy® blood and tissue kit (Qiagen, 
UK), according to manufacturer’s instructions. Species 
identification of An. gambiae s.l. samples followed the 
qPCR melt curve protocol of [49] using Brilliant III Ultra-
Fast SYBR Green Low ROX qPCR Master Mix (Agilent, 
UK) and was run on an Agilent AriaMx Real-Time PCR 
machine. Identifications were supplemented as neces-
sary by the PCR method of [50] and/or the PCR–RFLP 
method of [51], where the qPCR result was unclear. Sus-
pected An. funestus s.l. specimens were identified using 
the multiplex PCR protocol of [52]. In each PCR-based 
assay amplicons, differences in size which are species-
diagnostic were visualised on 2% agarose gels. For all 
genotyping analyses of mosquitoes, positive and negative 
control samples were included in each set of reactions.

Specimens morphologically identified as suspected An. 
kingi, or any which failed to amplify using the genotyping 
methods above were PCR-amplified using LCO1490 and 
HCO2198 cytochrome oxidase I primers (COI) [53] with 
PCRs cleaned using the Qiagen PCR purification column 
kit (Qiagen, UK). Cleaned PCRs were sent for sequenc-
ing in forward and reverse directions by Eurofins genom-
ics using the same primers. Resulting sequences were 
trimmed cleaned and aligned using CodonCode aligner 
software and checked for species identity using NCBI 
BLAST searches. Where necessary to attempt to improve 
species resolution, some of the samples sequenced at COI 
were additionally sequenced at the internal transcribed 
spacer 2 (ITS2) ribosomal DNA locus using primers 

ITS2A and ITS2B from [54]; bi-directional sequencing 
using the same PCR primers was performed by Eurofins 
genomics.

Intervention feasibility, acceptability and uptake 
monitoring
At field trial baseline (July 2024), a cross-sectional survey 
was conducted to enumerate households in both camps 
and to collect basic information about population demo-
graphics, household construction materials, vector con-
trol practices and intervention use, access to WASH and 
animal husbandry practices. Six months post ATSB dis-
tribution (February–March 2025), intervention accept-
ability was assessed among all participating households 
in Sabon Gari camp using a cross-sectional question-
naire. Focus group discussions (FGDs) were also con-
ducted with men (n = 10) and women (n = 10) separately 
in Sabon Gari camp to assess intervention acceptability, 
perceived entomological impact and willingness to pay.

Satellite remote sensing analysis
Given that adult mosquitoes must engage in frequent 
sugar feeding to meet their energetic requirements, their 
local and positional abundance reflects the propensity to 
support multiple life-history behaviours, including host-
seeking and blood-feeding, sugar foraging, mating, rest-
ing and oviposition. As such, vector abundance can be 
interpreted as an ecological proxy for the suitability of 
the environment to support these behavioural processes 
across the lifespan. To explore environmental drivers of 
vector abundance, a hybrid approach of unsupervised 
and supervised machine learning regression models was 
developed using composite demographic, bioclimatic 
and ecological remote sensing data. The full methodology 
is detailed in Additional file 1: Material S1, Tables S2–S4 
and Figs. S1–S4 (Allan R, Scherrer R, Estecha-Querol S, 
Weetman D, Paris L, Ba’abba Goni U, et al, The effective-
ness of long-lasting spatial  repellent against malaria in 
humanitarian crisis settings in Northern Nigeria. Lancet 
Infectious Diseases. 2025, under review) [55].

Sample size
The primary entomological endpoints were adult 
An. gambiae s.l., Ae. aegypti and Culex spp. abun-
dance indoors and outdoors, assessed by CDC-LTs 
and Prokopack aspirators. The sample size calculation 
of 130 households per field trial arm was powered on 
indoor female An. gambiae s.l. density. Baseline entomo-
logical monitoring estimated a coefficient of variation 
(CV) of 1.36 in An. gambiae s.l. counts between house-
holds; assuming an average of 20 female An. gambiae 
s.l. per household in the control arm, 80% power and a 
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5% significance level, this study was powered to detect a 
minimum intervention effect of 44.4%.

Statistical analysis
Based on observations of a high proportion of blood-
fed vectors in CDC-LTs at baseline, both indoor collec-
tions (CDC-LTs and Prokopack aspirator collections) 
were pooled per species for analysis. Differences in vec-
tor population density were analysed using mixed effects 
negative binomial regression, with a fixed interaction 
between study arm and timepoint, a random intercept 
for household to account for repeated longitudinal meas-
ures and robust standard errors to adjust for clustering. 
Within-arm pre-post effects were estimated for the con-
trol arm, as IRRt = exp(γt) (the time main effect at time t) 
and for the intervention arm as IRRt = exp(γt + δt) (time 
main effect plus the arm × time interaction at time t). 
Summary pre-post effect per arm was calculated as the 
geometric mean IRR and CIs were derived via the delta 
method using linear combinations of coefficients. Results 
are reported as incidence rate ratios (IRR) with corre-
sponding 95% confidence intervals (CI). Depending on 
relative sample size per timepoint, sub-analyses by vector 
sex, physiological status, month and location were also 
performed. To analyse vector species with sparser count 
data through time, we fitted a Bayesian negative binomial 
regression with fixed effects for study arm, timepoint and 
their interaction and a random intercept for household 
to account for repeated measures. Posterior distribu-
tions were estimated using Markov chain Monte Carlo 
(MCMC) sampling with default priors. Each model was 
run with 12,500 MCMC iterations, a burn-in of 2500 and 
a final posterior sample size of 10,000. Posterior means of 
the log-linear coefficients for interaction terms between 
study arm and timepoint were exponentiated to derive 
IRRs, and the corresponding 95% equal-tailed credible 
intervals were derived by exponentiating the posterior 
lower and upper bounds of the log-scale coefficients. 
Congruence of estimated intervention impact was vali-
dated between mixed effects negative binomial regres-
sion models and Bayesian negative binomial regression 
models using the most abundant vector species as test 
data (An. gambiae s.l. and Culex spp. populations; Addi-
tional file  1: Table  S5). Poisson regression was used to 
compare rates of vector blood-feeding pre- and post-
intervention. The number of blood-fed females was mod-
elled relative to the total number of females collected, 
which was included as a log offset to account for varia-
tion in sampling effort.

Entomological indices for immature vector surveys 
were calculated as follows: Container Index (CI) = con-
tainers positive for larvae or pupae*100 / containers 
inspected; Household Index (HI) = houses positive for 

larvae or pupae*100 / houses inspected; and Breteau 
Index (BI) = containers positive for larvae or pupae*100 / 
houses inspected and are presented in Additional file 1: 
Tables S6 and S7. We used a Bayesian multilevel logis-
tic regression model to evaluate the impact of ATSB on 
the likelihood of detecting immature vectors breeding 
in household containers with a random intercept for 
household for repeated measurements. The outcome was 
binary (presence or absence of larvae/pupae), and models 
included fixed effects for study arm, timepoint and their 
interaction. Posterior distributions were estimated using 
MCMC sampling with default priors. Each model was 
run with 12,500 MCMC iterations, a burn-in of 2500 and 
a final posterior sample size of 10,000. Posterior means of 
the log-linear coefficients for interaction terms between 
study arm and timepoint were exponentiated to derive 
adjusted odds ratios (aOR) with corresponding 95% cred-
ible intervals.

Baseline household characteristics were compared 
between camps using Pearson’s chi-squared tests or 
Fisher’s exact tests (when responses were < 10). FGDs 
were recorded, manually transcribed and reported quali-
tatively. For all analyses, protective efficacy (PE) was cal-
culated as (1 − IRR)*100. An alpha level of p = 0.05 was 
used for significance testing; p values were adjusted using 
Bonferroni correction when accounting for multiple test-
ing. No missing data were reported. All statistical analy-
ses were performed using StataNow/MP 19.5 (StataCorp 
LLC, College Station, TX). Data were visualised in RStu-
dio v2024.12.1 + 563 [56].

Results
Baseline household characteristics per camp, including 
house construction, vector control practices, water stor-
age practices, WASH access and animal husbandry, are 
summarised in Additional file  1: Table  S8. Most house-
holds were constructed from plastic sheeting (79.43%; 
251/316), with open windows (57.28%; 181/316) and 
few indoor toilets (37.03%; 117/316). Householders 
had access to waste collection (66.46%; 210/316) and 
drinking water located within minutes of their house 
(79.75%; 252/316). A minority of householders kept 
animals, principally poultry (10.44%; 33/316), dogs/
cats (6.01%; 19/316) and goats (3.16%; 10/316). House-
holders reported using ITNs for vector control (70.57%; 
223/316), with 80.38% (254/316) of household currently 
using ITNs. The majority of ITNs were received during 
mass distributions by the National Malaria Control Pro-
gram/non-governmental organisations (31.96%; 101/316) 
or bought by householders in the shop/market (31.65%; 
100/316). The proportion of current ITN users was com-
parable between intervention and control camps (75.37% 
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versus 84.07%, respectively; χ2 = 1.51; p = 0.220). Most 
householders reported receiving their ITNs years ago 
(62.34%; 197/316); the median age of ITNs was 2  years 
(SD ± 1.79 and 1.19, respectively) in both intervention 
and control camps.

One hundred and seventy-two shelters received the 
initial ATSB intervention, housing 804 individuals, with 
an average of 1.47 (SD ± 0.051) rooms per shelter. After 
the entomological round 3, 169 households received 
new ATSB; 3 families dropped out of the study. ATSB 
coverage and retention remained high throughout the 
field trial, with 98.82% of households reporting all pre-
sent ATSB stations each month (1007/1019 responses). 
Twenty-two ATSB stations went missing (6 inside and 
16 outside) and were replaced during the field trial: 16 at 
round 2, 2 at round 3, 2 at round 5 and 2 at round 6.

During 6  months of post-intervention entomologi-
cal monitoring, a total of 18,156 adult An. gambiae s.l. 
were collected, 17,800 inside and 356 outside (Additional 
file 1: Tables S9 and S10); a total of 1189 Aedes spp. were 
collected, 834 inside and 355 outside (Additional file  1: 
Tables S11 and S12), of which 923 were identified as Ae. 
aegypti (Additional file 1: Tables S13 and S14); and a total 
of 225,393 Culex spp. were collected, 209,498 inside and 
15,895 outside (Additional file  1: Tables S15 and S16). 
Molecular species identification classified the majority of 
An. gambiae s.l. as An. coluzzii (77%), with proportions 
comparable between field trial arms (Additional file  1: 
Material S2 and Table  S17 [57]). Suspected An. kingi 
individuals were confirmed molecularly as An. coustani 
group or An. squamosus.

Post-intervention, ATSB demonstrated a significant 
impact on the density of indoor female An. gambiae 
s.l. over 6  months of follow-up (IRR: 0.140 [95% CI: 
0.093–0.212]; p < 0.0001) (Table 1 and Fig. 2) and indoor 
blood-fed An. gambiae s.l. density for the first 2 months 
post-intervention, after which complete population sup-
pression was observed in the intervention arm (IRR: 
0.0193 [95% credible intervals: 0.0111–0.036]) (Table 1). 
A significant intervention effect was also evident for 
both sexes of indoor An. gambiae s.l. and all outdoor 
An. gambiae s.l. (Table 1). Following ATSB deployment, 
a significant reduction in the rate of indoor An. gambiae 
s.l. blood-feeding was observed in the intervention arm 
(IRR: 0.086 [95% CI: 0.0749–0.0978]; p < 0.0001); a paral-
lel significant increase in the rate of indoor An. gambiae 
s.l. blood-feeding was apparent in the control arm (IRR: 
1.962 [95% CI: 1.819–2.116]; p < 0.0001).

Similarly, post-intervention, ATSB demonstrated a 
significant impact on indoor blood-fed Ae. aegypti (IRR: 
0.0746 [95% credible intervals: 0.00884–0.502]) for the 
first 2  months post-intervention, after which complete 
population suppression was observed in the intervention 

arm (Fig.  2). A significant intervention impact was also 
evident on outdoor Aedes spp. density across 6  months 
of follow-up (IRR: 0.0041 [0.0012–0.014]; p < 0.001; Addi-
tional file 1: Table S18). No significant intervention effect 
was observed for other Aedes spp. populations (Addi-
tional file  1: Table  S18). Following ATSB deployment, 
a significant reduction in the rate of indoor Ae. aegypti 
blood-feeding was observed in the intervention arm 
(IRR: 0.136 [95% CI: 0.0325–0.568]; p = 0.006); a paral-
lel significant increase in the rate of indoor Ae. aegypti 
blood-feeding was apparent in the control arm (IRR: 
1.536 [95% CI: 1.130–2.086]; p = 0.006).

ATSB had a minimal reduction in Culex spp. popula-
tion density (Additional file 1: Table S19) until month 5, 
when an upward trend in PE was observed, becoming 
statistically significant at the final follow-up (IRR: 0.448 
[95% CI: 0.288–0.696]; p < 0.0001). Consistent with sea-
sonal temporal trends, relative to baseline, most vector 
population densities declined over 6  months of follow-
up; however, the reduction was markedly greater in the 
intervention arm (Additional file 1: Tables S20 and S21). 
ATSB did not have a sustained impact on presence of 
immature mosquito life stages among study households 
(aOR: 0.551 [95% credible intervals: 0.164–1.742]); how-
ever, a significant reduction was observed at 2, 5 and 
6 months post-intervention (Additional file 1: Table S22).

After 6 months of use, ATSB were well received by male 
and female householders (Additional file 1: Table S23). In 
general, participants in both FGDs were initially hesitant 
about the intervention but then observed an entomo-
logical impact, which improved intervention acceptabil-
ity. Householders reported minimal issues with ATSB 
installation and experienced no observable side effects. 
Householders also expressed a preference for ATSB over 
other vector control tools, a willingness to use ATSB 
in the future and to purchase the intervention. FGD 
observations were consistent with positive acceptability 
results from the cross-sectional survey (Additional file 1: 
Table S24).

The strongest environmental predictors (XGBoost 
Tuned; RMSE = 70.84; ROC AUC = 0.830) of An. gam-
biae s.l. occurrence were composite indices of vegetation 
water content, soil moisture, moist canopy, land cover 
diversity, urbanisation (human modification index, pop-
ulation density and built volume) and normalised and 
enhanced vegetation index which together contributed to 
73.5% of the final model (Fig. 3 and Additional file 1: Fig. 
S3).

Discussion
Field trial findings demonstrated a significant impact of 
ATSB on pyrethroid-resistant An. gambiae s.l. popula-
tions across the household, as well as indoor blood-fed 
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Ae. aegypti and outdoor Aedes spp. populations. This is 
the first study to report an entomological effect of ATSB 
at the community-level against both sympatric malaria 
and dengue vector species, as well as to evaluate this tool 
in temporary shelters during a protracted humanitarian 
emergency. ATSB was received with high levels of partic-
ipant acceptability, including willingness to pay, following 
perceived entomological effect, which is consistent with 
previous qualitative assessments of ATSB uptake [58, 59]. 
Given the inherent biological and operational restraints 

of ‘gold standard’ vector control interventions, study 
results strongly support future deployment of ATSB to 
control multi-vector populations in crisis settings, poten-
tially expanding the toolbox of efficacious products for 
the emergency context.

Interestingly, our field trial observations do not align 
with previous multi-county cRCTs of ATSB, which 
failed to reduce malaria transmission or Anopheles par-
ity [34, 35]. Discordance in entomological results may 
be explained by several factors, including insufficient 

Fig. 2  Monthly protective efficacy of ATSB against indoor female An. gambiae s.l. and indoor blood-fed Ae. aegypti over 6 months of follow-up. 
Points indicate estimates of PE for each follow-up month (months 1–6), and shaded areas represent 95% confidence intervals. Baseline data (month 
0) were included in the models for adjustment but not shown in the figure

Table 1  Protective efficacy of ATSB against wild pyrethroid-resistant An. gambiae s.l. populations in Northern Nigeria across 6 months 
of follow-up

a Indoor vector populations refer to An. gambiae s.l. collected in both CDC-LTs and by indoor Prokopack aspirators.
b ll household vector populations refer to An. gambiae s.l. collected in CDC-LTs and by both indoor and outdoor Prokopack aspirators.
c IRR reported from mixed effects negative binomial regression, with a fixed interaction between study arm and timepoint, a random intercept for household to 
account for repeated measures and robust standard errors to accommodate clustering.
d IRR reported from Bayesian negative binomial regression models, with a fixed interaction between study arm and timepoint, a random intercept for household to 
account for repeated measures.
e Credible intervals which do not include 1 are considered statistically significant.
f Due to sparse/zero An. gambiae s.l. counts during later field trial months, this analysis was restricted to the baseline and the first 2 months post-intervention.
g PE = protective efficacy ((1 − IRR)*100)

Vector population IRR [95% CI] Protective efficacy [95% CI]g p value

Indoora female An. gambiae s.l. (all physiological 
status)

0.140 [0.093–0.212]c 85.95% [78.84%–90.67%]  < 0.0001

Indoora An. gambiae s.l. (both sexes) 0.141 [0.094–0.210]c 85.95% [78.98%–90.61%]  < 0.0001

Indoora blood-fed An. gambiae s.l 0.0193 [0.0111–0.0356]d,e,f 98.07% [96.44%–98.89%] –

Outdoor An. gambiae s.l 0.0088 [0.0036–0.214]c 99.12% [97.86%–99.64%]  < 0.0001

Allb household An. gambiae s.l 0.140 [0.0949–0.206]c 86.0% [79.40%–90.51%]  < 0.0001
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ATSB coverage per house/density per hectare, ATSB 
location, intervention durability and environmental dif-
ferences between sites. In this study, we deployed ATSB 
as a combined indoor and outdoor intervention, install-
ing two ATSB units outside and one inside per eligi-
ble structure. Earlier semi-field trials of ATSB in Mali 
evaluated this intervention inside houses, reporting a 
decrease in indoor female An. gambiae s.l. populations 
by 90% and a 3.8-fold reduction in proportion of female 
vectors that had completed four or more gonotrophic 
cycles [30]. Similarly, in Tanzania and Côte d’Ivoire, 
indoor experimental ATSB, using either chlorfenapyr 

or boric acid, were highly efficacious against wild An. 
arabiensis and Cx. quinquefasciatus, and An. gam-
biae s.l., respectively [31, 60]. With growing impetus 
from the vector control community to develop new 
tools to tackle outdoor malaria transmission and hot 
spots of residual infection [22, 61], later large-scale 
cRCTs installed two ATSB on outer house walls [44], 
thereby relying upon host-seeking, endophagic vec-
tors to sugar feed outside either before or after house 
entry. However, the evidence for predominant outdoor 
foraging/resting behaviours in major vector species is 
variable. In some settings, the proportion of exophilic 

Fig. 3  Multispectral satellite imagery of Maiduguri during the 2024 rainy season, derived from the Sentinel-2 Surface Reflectance Harmonized 
dataset (COPERNICUS/S2_SR_HARMONIZED), displaying key environmental predictors of An. gambiae s.l. occurrence. Individual images were 
aggregated over a 4-month period, and the median spectral value of each pixel, within the area of interest (AOI), was computed to represent 
typical surface conditions, with cloud contamination and sensor noise excluded from analysis. A Normalised difference vegetation index 
(NDVI = (NIR − Red) / (NIR + Red); B enhanced vegetation index (EVI = 2.5*(NIR − Red) / (NIR + 6 Red − 7.5*Blue + 1); C normalised difference water 
index (NDWI = (Green − NIR) / (Green + NIH); D red, green, blue reflectance (RGB composite using reflectance bands: B2 = blue, B3 = green 
and B4 = red); E normalised difference built-up index (NDBI = (SWIR − NIR) / (SWIR + NIR)); and F bare soil index (BSI = ((SWIR + RED) − (NIR + BLUE)) / 
((SWIR + RED) + (NIR + BLUE))
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An. gambiae s.l. may exceed 70% of the overall vector 
population [62], while in others, less than 15% of mos-
quitoes were collected outside [63], with plasticity in 
preferences driven by overlapping genetic adaptations 
[64], vector life-histories [65], microclimatic conditions 
[66] and community coverage of indoor insecticidal 
interventions [62]. Furthermore, such vector behav-
iours cannot be assumed to be uniform throughout a 
mosquito’s lifespan. Newly emerged female mosquitoes 
have greater initial requirements for sugar versus blood 
[67] and may be more likely to feed from ATSB prior 
to finding a blood-meal. In this scenario, ATSB deploy-
ment will result in vector population suppression over 
time but may not initially reduce the more epidemio-
logically relevant cohort of older Plasmodium-infected 
mosquitoes to the same extent as their younger 
counterparts.

There were several other features of this field trial 
design and camp environment which may explain the 
significant intervention effect reported in this study com-
pared to the ATSB cRCTs. IDP camp households were 
spatially clustered, often with multiple families resid-
ing under a single roof. While formal estimations of 
target ATSB number per area are forthcoming [34], dis-
persed settlement patterns, and resulting low interven-
tion density was cited as one explanation for the lack of 
ATSB efficacy in Kenya and Zambia [34, 35]. In this field 
trial, we maintained high ATSB coverage by rigorous 
monitoring, with missing stations replaced immediately, 
and all units were pre-emptively exchanged anew after 
3  months of community use. Previous large-scale dura-
bility monitoring of outdoor ATSB reported the median 
survival time was 7 months [68, 69], with vector mortal-
ity remaining higher than 80% as ATSB aged under field 
conditions [70]; while not yet quantified, indoor station 
longevity would be expected to be greater, without expo-
sure to the elements. In this field trial, we adopted a more 
conservative approach by shortening the length of field 
use of each ATSB unit to establish proof-of-concept of 
this intervention in the emergency setting. Prospective 
ATSB deployment in this context could adopt a less fre-
quent replacement scheme, supported by high levels of 
community acceptability and uptake.

Arguably, the most parsimonious reason for differ-
ences in ATSB impact between study sites is the relative 
abundance of alternate environmental sugar sources. 
Using a supervised machine learning approach, we 
identified green biomass and moisture indices, includ-
ing vegetation water content, soil moisture, moist can-
opy, landcover diversity, urbanisation and normalised 
and enhanced vegetation index, as principal drivers of 
An. gambiae s.l. occurrence during the rainy season in 
Maiduguri. Further work is required to determine key 

ecological variables and associated thresholds which 
are predictive of ASTB performance. In general, once 
vector control tools have received a WHO recommen-
dation from the Vector Control Advisory Group, the 
conventional paradigm has assumed that intervention 
efficacy is comparable across endemic areas, recognis-
ing that there are limited resources available for tool 
evaluation in every conceivable setting. Tailoring vec-
tor control intervention deployment at the sub-national 
level [71, 72] has been gaining prominence both in 
response to the biological threat of ubiquitous insec-
ticide resistance among Anopheles populations [73, 
74] and the availability of more expensive, yet more 
effective new dual-A.I. ITNs [16, 17, 75]. ATSB is an 
intervention that, by definition, will have variable effi-
cacy based on the availability of environmental sugar 
sources. Contemporary frameworks for ATSB deploy-
ment are based upon predicted proportion of dyed/
bait-feeding vectors [76]; our field trial results dem-
onstrate the utility of remote sensing data to support 
intervention deployment and argue for inclusion of 
high-resolution ecological site characterisation as an 
additional dimension for decision-making regarding 
ATSB implementation. Comparing predominant envi-
ronmental predictors across geographical locations 
may enable the identification of ecological settings 
where vector behaviours are more likely to support sus-
tained ATSB impact, thereby informing targeted inter-
vention deployment.

Our field trial results raise several unanswered ques-
tions regarding the mode of action of ATSB on vector 
populations. Following ATSB deployment, blood-feeding 
rate in the intervention arm dropped to 8.6% and 13.6% 
compared to baseline, for both An. gambiae s.l. and Ae. 
aegypti, respectively. After feeding on ATSB, it is antici-
pated that vector neurotoxicity is rapid, within 24–48 h. 
Results may indicate that dinotefuran ingestion can also 
inhibit blood-feeding, either by impairing host-seeking, 
disrupting probing, or overall reducing coordination 
and responsiveness to host semiochemical cues. To date, 
there is a paucity of data regarding the effect of suble-
thal oral dinotefuran exposure on vector blood-feeding, 
which warrants further investigation. The results of this 
field trial also suggest that indoor and outdoor ATSB may 
differentially contribute to the intervention effect per 
vector species; at the field trial baseline, 1.75% and 68.1% 
of household An. gambiae s.l. and Ae. aegypti, respec-
tively, were found outside. To determine whether vector 
feeding was equitable across indoor and outdoor ATSB, 
future field trials should consider using different dye 
colours per station or newly developed scalable camera 
traps [77].
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The field trial results should be interpreted in the con-
text of several limitations. Assessment of the relative 
proportions of vectors feeding on natural sugar (by cold 
anthrone testing) [32] or ATSB (by treating bait stations 
with food dye or uranine) [78] was outside the scope of 
this study. It was also not feasible to rear immature vec-
tor stages to adulthood, meaning these entomological 
indices cannot be disaggregated by genera; however, the 
abundance of adult Culex in our field trial sites and lack 
of intervention effect on adults of these species likely 
explains the variable impact observed on immature vec-
tor life stages. Finally, additional measurements of vec-
tor parity to determine the effect of ATSB on reducing 
gonotrophic cycle number, blood-meal analysis to dissect 
changes in host feeding following dinotefuran exposure, 
and Plasmodium sporozoite rate to assess intervention 
impact on malaria transmission, were not possible due to 
financial constraints.

Conclusions
To date, the phase III epidemiological and entomological 
evidence for ATSB deployment has been mixed. This field 
trial is the first to report an entomological effect of ATSB 
at the community-level against both sympatric malaria 
and dengue vector populations, as well as to evaluate this 
innovative tool in temporary shelters during a protracted 
humanitarian crisis. Field trial findings indicated that 
combined indoor and outdoor ATSB can achieve rapid 
suppression of An. gambiae s.l. and Ae. aegypti popula-
tions within 2  months of implementation. We attribute 
the positive entomological outcomes reported herein 
to several key differences in field trial design, study site 
characteristics and intervention deployment, compared 
to prior cRCTs. In this field trial, ATSB were deployed as 
a combined indoor and outdoor intervention, with evi-
dence indicating differential contributions in bait stations 
to intervention impact per major vector species. House-
holds in this field trial were also spatially clustered, lead-
ing to high intervention density per area and complete 
ATSB coverage was maintained by rigorous monitoring, 
with missing stations replaced immediately, and all units 
pre-emptively exchanged anew after 3  months of com-
munity use. The results of this field also demonstrated 
the use of remote sensing data to support intervention 
deployment and argue for the inclusion of high-resolu-
tion environmental site characterisation as an additional 
dimension for decision-making regarding ATSB use. 
Given the inherent biological and operational restraints 
of the major vector control interventions, these field trial 
results strongly support future deployment of ATSB to 
control multi-vector populations in crisis settings, poten-
tially expanding the toolbox of efficacious products for 
the emergency context.
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